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Monte Carlo simulations have been performed for an unattached polymer in a grafted polymer layer (a
polymer brush). The simulations employ a non-Boltzmann sampling method to calculate the free energy of the
unattached chain as a function of its vertical position in the brush, W(z), and the free energy per chain in the
grafted layer, f. Contrary to other recent reports, we find grafting conditions where the variation of f is
consistent with scaling and analytical self-consistent field (SCF) theories. The free-energy profile, W(z), also

follows a form predicted from SCF theory.

PACS number(s): 61.25.Hq, 68.45.Ws

When polymers are attached by one end to a surface, they
often become crowded, stretch away from the surface, and
form a “brush” [1,2]. Due to their unique architecture,
brushes have fascinating physical properties which can be
exploited in several ways. Brushes have found extensive use,
for example, in stabilizing colloidal dispersions [3], they can
be used to control the transport of macromolecules through
narrow pores [4], and they can serve as synthetic analogues
to naturally occurring biological membranes [5]. The steric
stabilization provided by grafted polymers has even been
used to design drugs to fight a strain of the influenza virus
[6].

Two opposing driving forces govern the properties of
grafted polymer layers in good solvents. Scaling analyses [7]
and self-consistent field (SCF) theories [8,9] quantify the
balance between the free-energy cost of chain stretching and
the free-energy gain of solvation. When these two free-
energy components are described by the theory of semidilute
solutions [10], both scaling and SCF theories predict the fol-
lowing asymptotic scaling of the free energy per chain in the
grafted layer, f:

f~N(TS/6, (1)

where N is the chain length and o is the surface grafting
density. In contrast, a mean-field (MF) treatment of stretch-
ing and solvation predicts a different scaling law:
fmr~Na?3. Nevertheless, both free-energy expressions lead
to the same scaling law for the brush height, Ai~Ng'/3,
which has been confirmed through computer simulations
[11-13] and experiments [14]. These measurements cannot
directly test the free energy scaling, however, and in prin-
ciple, other free-energy expressions may give rise to the
same scaling law for h. A few recent studies have examined
the free-energy variation through computer simulation [15]
and mean-field theory [16], but their results were not consis-
tent with either scaling law for f given above. The discrep-
ancy raises questions about the conditions, if any, where the
asymptotic free-energy scaling laws are valid. This issue
must be resolved because the conformational free energy
plays a central role in determining important properties of
polymer brushes, including their ability to resist deformation
and provide steric stabilization.
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The free energies of chain stretching and solvation have
additional consequences for kinetic processes in grafted lay-
ers. During the fabrication of a brush, for example, end-
adsorbing chains that arrive near the grafting surface encoun-
ter a large free-energy barrier to adsorption, because they
must stretch beyond their equilibrium dimensions and sacri-
fice contact with the solvent in order to enter the grafted
layer [17,18). The resistance to adsorption can be quantified
by the free-energy profile W(z), defined as the free-energy
change that accompanies the translation of the adsorbing end
of the free chain from far outside the brush to a position z
within the brush. Ligoure and Leibler [17] and Milner [18]
have analyzed the form of W(z) in studies of adsorption
kinetics, while Halperin and Alexander [19] have considered
W(z) in the context of expulsion from grafted layers. Each
treatment has predicted a different functional form for W(z),
however, and no computational studies have yet been re-
ported to evaluate these theoretical predictions.

Here, we report the first direct numerical calculation of
the free-energy profile, W(z), for a free chain within a
grafted polymer layer. We conduct Monte Carlo (MC) simu-
lations of unattached polymer chains within monodisperse
brushes on flat surfaces; the simulations employ a non-
Boltzmann sampling method to obtain W(z) accurately even
in regions of very high free energy. Since the free chain is
structurally identical to the grafted chains, the free-energy
profile evaluated at the grafting surface, W(0), yields the
free energy per chain in the brush, f. We can therefore test
the scaling law in Eq. (1) in a model system with an exact
numerical solution of its statistical mechanics. Although re-
cent studies [15,16] have not found support for the scaling
laws given above, our results do agree with Eq. (1) and,
along with measurements of forces between grafted layers
[20], give support to the earlier theoretical treatments [7,8].

In principle, the free-energy profile can be obtained from
MC simulations of a free chain and a grafted layer by accu-
mulating P(z), the probability of finding the first segment of
the free chain at a distance z from the grafting surface, and
using the relationship W(z) « — kgT In P(z). This approach
fails, however, for brushes of moderate or high grafting den-
sity. In these cases, the probability of finding the free chain
within the brush is very small, and the statistical uncertainty
in P(z) is overwhelming. To alleviate this problem, we use a
simple form of non-Boltzmann sampling [21] to calculate
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W(z). We assume that the first segment of the free chain, and
only this segment, contains a fictitious “charge” that couples
to an external field such that the total free energy of the free
chain becomes W(z)+ Fz. Since the external field affects
only the first segment of the free chain, the field does not
perturb the global structure of the free or grafted chains [22].
In the presence of the external field, the free-energy profile is
given by

Wiz)= P(z)
(z)=F(zyg—2z)—kgT In 17(—25 , 2)

where z is chosen outside the brush so that W(z,)=0. The
simulation box is finite in the z direction, so P(zy) remains
nonzero. Furthermore, the free chain is not allowed to adsorb
irreversibly when it comes into contact with the surface, so it
continues to sample the region within the brush. The result-
ing free energy contains contributions from chain stretching
and solvation, but it does not contain the binding energy of
the adsorbing group [7].

For computational simplicity, the simulations are per-
formed with a lattice model similar to the bond fluctuation
model of Carmesin and Kremer [23]. Each polymer segment
occupies one site on a “‘primary” cubic lattice with a lattice
constant ap=1, and the bond lengths are allowed to fluctu-
ate among the values 1, 212 and 3'2. Excluded volume
interactions are enforced for the segments on the primary
lattice. By virtue of the lattice geometry, the midpoints of all
bonds must lie on a “secondary” lattice with a lattice con-
stant ag=ap/2, and the crossing of polymer chains can be
rigorously forbidden by tracking the locations of the mid-
points on the secondary lattice and enforcing a separate “ex-
cluded volume” condition for the bond midpoints on the sec-
ondary lattice. In this way, the proper chain topology is
strictly preserved [24]. The initial configurations of the
grafted chains are generated following Lai and Binder [13],
and the free chain is initially grown as a random coil outside
the brush. The anchoring segments of the grafted chains are
allowed to move in the plane of the grafting surface, so these
degrees of freedom are annealed. Periodic boundary condi-
tions are applied in the x and y directions, while impen-
etrable walls are present in the z direction; the lattice dimen-
sions are chosen so that periodic images do not interact.
Approximately 10® MC steps were used for equilibration; on
the order of 107 steps were used to accumulate statistics for
P(z). We report energy in units of kg7, length in units of
ap. Since the excluded volume interactions in the lattice
model are athermal, the grafted chains are in effect immersed
in a good solvent.

The first simulation results concern the scaling of the
free energy per chain in the brush, shown in Fig. 1 as f/N
versus o in logarithmic coordinates. The solid line passing
through most of the simulation data corresponds to
fIN~a>’®, indicating that Eq. (1) describes the scaling be-
havior of the chain free energy very well, even for chains as
short as N=10. In contrast, the mean-field free-energy ex-
pression (fye~Na?/?) is not appropriate for the good (ather-
mal) solvent conditions studied here. Although Eq. (1) is
valid at moderate grafting densities, deviations from the scal-
ing law become evident below an N-dependent ‘“‘overlap
density.” The lower limit of the scaling regime is delineated
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FIG. 1. Free energy per chain normalized by chain length, f/N,
versus grafting density, o, in log-log format for chain lengths rang-
ing from N=10 to 80. The solid line indicates the variation pre-
dicted by Eq. (1).

by the dimensionless quantity d/R,, where d is the average
distance between grafting points. Taking d~ o~ '/?, the free
energy departs from Eq. (1) when d/R, is below a constant
of order unity. The scaling relationship in Eq. (1) should also
fail at high grafting densities when the free-energy expres-
sions used for chain stretching and solvation become invalid.
Deviations from the scaling law are not pronounced, how-
ever, as long as h/R,<5 [25].

In recent MD simulations of brushes at constant sur-
face pressure [15], Grest examined the scaling of the free
energy per chain through the variation of the surface os-
motic pressure per unit area, II,, and the relationship
I,=0°(df/dc). The scaling law in Eq. (1) predicts
Ha~Na“"(’, but the MD simulations measured Il,~ o™,
with x=2.5%0.2 for brushes in good solvents. Further-
more, a recent mean-field theory of Carignano and Szleifer
[16] has suggested that, for finite chain lengths, II, is best
expressed in a virial expansion in the density profile and
there may be no region of scaling behavior for the confor-
mational free energy, f. (Any scaling exponents for f would
be only apparent exponents for a narrow region of o.) Nev-
ertheless, the data in Fig. 1 show no systematic deviation
from Eq. (1) for values of o where the grafted chains are
moderately stretched. There is no clear source for the dis-
crepancy between the MD simulations, the recent mean-field
theory, the current MC simulations, and the earlier analytical
theories; the disagreement may simply arise because the on-
set of scaling behavior is sensitive to the details of the mo-
lecular model.

Our final result concerns the free-energy profile, W(z),
which has been calculated from Eq. (2) for several different
grafting conditions. The universal character of the free-
energy profile can be illustrated by presenting scaled coordi-
nates in which W(z) can be reduced to a master curve for a
wide range of N and o. The scaling law in Eq. (1) suggests
that W(z) should be normalized by No*'® in constructing the
universal curve for the free-energy profile. Furthermore, the
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W(z)/(No™®)

FIG. 2. Normalized free-energy profile, W(z)/(Na>’®), versus
dimensionless distance z/h. Empty symbols are data for chains of
length N=30, filled symbols are for N=40, and symbols with
dots are for N=60. Diamonds, circles, squares, upright triangles,
and upside-down triangles correspond to values of 0=0.025, 0.05,
0.10, 0.15, and 0.20, respectively. The solid line corresponds to
Eq. (3).

natural choice for the dimensionless measure of distance is
z/h, where h is the brush height. In Fig. 2, we present the
free energy profile in these scaled coordinates for several
values of N and o [25]. The data do indeed collapse to a
single curve, which has several notable features.

The free-energy profile is nearly linear for (z/h)<<0.50.
Near the grafting surface, an incoming free chain therefore
faces a nearly constant resistance during its approach to
the surface. Halperin and Alexander [19] have predicted a
linear free-energy profile based on a simple picture of the
grafted layer and the adsorption process. They assume that
the density profile of grafted segments is uniform [7] and
that the portion of the free chain within the brush is stretched
uniformly while the portion of the free chain outside the
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brush is unperturbed. Although these assumptions are not
satisfied in general, they become better approximations as
the free chain approaches the surface; the form of W(z) then
becomes very close to the predicted linear profile. Milner
presented a more detailed analysis based on an analytical
SCF theory and derived the following form for the free-
energy profile [18]:

W(z)=%{cos_l(z/h)—(z/h)[l—(z/h)z]”z}, @3)

where f is again the free energy per grafted chain. Referring
to Fig. 2, the normalized simulation data are consistent with
this expression throughout most of the brush. Since Eq. (3)
was derived from a mean-field expression for the chain
stretching and solvation energies, it is not expected to be
exact for athermal solvents. The quantitative corrections for
good solvent conditions should be small, however, as they
are for the density profile in the analytical SCF treatment
[26]. Deviations from the SCF result may also be expected
due to the depletion of segment density near the hard wall
[27]). The quantitative effects of the depletion layer are
masked by the statistical uncertainty in the calculated free
energies.

To summarize, we have used Monte Carlo simulations
with a non-Boltzmann sampling method to investigate the
free energy of polymer chains in brushes. The free energy
per grafted chain, f, agrees well with the predictions of scal-
ing and SCF theories for moderate grafting density in good
solvents [7,8]. This result should add to the ongoing discus-
sion of free energy scaling in grafted polymer layers [15,16].
The free energy profile for a free chain entering a brush,
W(z), can be expressed universally by using the scaled co-
ordinates W(z)/(Na>'®) versus z/h; the normalized profile
agrees well with the form obtained by Milner from an ana-
lytical SCF theory [18]. The form of W(z) can be incorpo-
rated in models used to design and optimize the processes
that are used to fabricate polymer brushes on both laboratory
and industrial scales.

The author wishes to thank A. K. Chakraborty, C. H. Mak,
M. Sahimi, and M. Tirrell for helpful discussions.
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